Prediction of Land Use Change and its Hydrological Effects Using Markov Chain Model and SWAT Model

Authors

  • Rashtbari, Maryam K.N. Toosi University of Technology
Abstract:

Access to current and future water resources is one of the concerned problems for managers and policymakers around the world. Because of the communication between water resources and land use, these two topics had come together in different researches. Scenarios designed in regional land planning provide the basis for analyzing the existing opportunities and making the right decisions for managing these natural resources. In this research, a combination of the Markov Chain model and multilayer perceptron network (MLP) were used for predicting the land-use changes in Sarab watershed  and the SWAT model was used for hydrological modeling of the watershed area. Using the land use map in 2015, soil map, digital elevation model and meteorological data during the period (1987-2015), the hydrological model of the area is formed and also calibrated. According to the land-use changes in the past (1987-2015), three scenarios defined and three land use maps have been predicted for 2030 by modeling the land-use changes and calculating the conversion probability matrix using the Markov chain model. The watershed hydrological response to the first scenario with the title of conversion of grassland to the irrigated agriculture was observed an increase of 0.7% of the annual average run-off and a 4% decrease in the river flow. In the second and the third scenarios, the surface run-off has been increased by 1% and 2.5% respectively by conversion of the grassland to the rain-fed agriculture and bare lands. Flow changes in these two scenarios show an increase of 1.8%. According to the results of this research, grazing and conversion grassland to bare lands will have the greatest impact on underground water resources in the Sarab basin. Furthermore, the expansion of irrigated agriculture lands, by increasing the harvesting of surface water and underground water resources will result in a significant reduction of these resources.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Simulation and prediction of land use and land cover change using GIS, remote sensing and CA-Markov model

This study analyzes the characteristics of land use/land cover change in Jordan’s Irbid governorate, 1984–2018, and predicts future land use/land cover for 2030 and 2050 using a cellular automata-Markov model. The results inform planners and decision makers of past and current spatial dynamics of land use/land cover change and predicted urban expansion, for a better understanding and successful...

full text

land use change prediction using a hybrid (ca-markov) model

landsat data for 1992, 2000, and 2013 land use changes for ekbatan dam watershed was simulated through ca-markov” model. two classification methods were initially used, viz. the maximum likelihood (mal) and support vector machine (svm). although both methods showed high overall accuracy and kappa coefficient, visually mal failed in separating land uses, particularly built up and dry lands.there...

full text

Modeling land use changes using Markov chain model and LCM model

Land use maps are considered as the most important sources of information in natural resource management. The purpose of this research is to review, model, and predict landslide changes in the 30-year period by LCM model in Shiraz. In this research, TM Landsat 4, 5 and OLI Landsat 8 images were used for 1985, 2000 and 2015 respectively, as well as topographic maps and area coverage. Subsequent ...

full text

Detection and prediction of land use/ land cover changes using Markov chain model and Cellular Automata (CA-Markov), (Case study: Darab plain)

unprincipled changes in land use are major challenges for many countries and different regions of the world, which in turn have devastating effects on natural resources, Therefore, the study of land-use changes has a fundamental and important role for environmental studies. The purpose of this study is to detect and predicting of land use/ land cover (LULC) changes in Darab plain through the Ma...

full text

Land use and land cover spatiotemporal dynamic pattern and predicting changes using integrated CA-Markov model

Analyzing the process of land use and cover changes during long periods of time and predicting the future changes is highly important and useful for the land use managers. In this study, the land use maps in the Ardabil plain in north-west part of Iran for four periods (1989, 1998, 2009 and 2013) are extracted and analyzed through remote sensing technique, using the land-sat satellite images. T...

full text

land use /cover change monitoring and prediction using markov chain (case study: the abbas plain)

remote sensing is a key technology for assessing expansion and rate of land cover changes that awareness of these changes as the basic information has a special importance for various programs. in this study, land use changes were examined over the past 24 years, and the feasibility of predicting it in the future was evaluated by using the markov chain model of the abbas plain. landsat tm, etm+...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 7  issue 4

pages  41- 59

publication date 2020-03

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023